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The generalized Sutherland-R6mer and Yan models with an internal spin degree of freedom are for-
mulated in terms of both the Polychronakos’ approach [Phys. Rev. Lett. 69, 703 (1992)] and the RTT re-
lation [see Integrable Quantum Field Theories, edited by J. Hietarinta and C. Montonen, Lecture Notes
in Physics Vol. 151 (Springer, New York, 1982), pp. 61-119] associated with the Yang-Baxter equation
in a consistent way. A deformed-loop symmetry is shown to generate both of the models. We finally in-
troduce the reflection algebra K (u) to long-range-interaction models.

PACS number(s): 05.30.—d, 03.65.Fd, 05.50.+q

I. INTRODUCTION

In the last few years, a number of one-dimensional
long-range-interaction models have been studied [1-10].
A typical one is the Calogero-Sutherland (CS) model [1,2]
which is subsequently extended to the models with inter-
nal spin degrees of freedom [5-9]. Among them there is
an interesting approach that was proposed by Bernard,
Gaudin, Haldane, and Pasquier (BGHP), who related this
type of model to the RTT relation [17] associated with
the Yang-Baxter equation YBE [10]. The BGHP ap-
proach provides a method to deal with long-range-
interaction models: for a given rational solution of YBE,
for example, R(u)=u+P, where P is the permutation
and u the spectral parameter and the RTT relation gives
rise to the Yangian (deformed-loop) symmetry. With a
particular realization of this symmetry, in general, we
can generate corresponding Hamiltonians of the con-
sidered systems.

On the other hand, Polychronakos had formulated the
integrability in terms of the “coupled” momentum opera-
tors [5,6]:

m=p;ti > VK, (1.1)
Ji
where p; = —i(d/0x;) (A=1), and V;;=V(x;—x;) a po-
tential to be determined, and K;; are the particle permu-
tation operators. The requirements for the Hermiticity of
r;, the absence of linear terms in p;, and that only the
two-body potentials in the Hamiltonian lead to [5]

Vix)=—V(—x),

57217 Zp i3 —VK -1—V2 (1.2)
i i#j
-5 X Viijijk ’
i jAkEi
where
ik =VijVie t Vi Vki+VkiVu=Wij+ij+Wki(’l 3)
Ki]k K K]k ’

with W;=W(x;—x;) being a symmetric function. The
commutation relation between 7; and 7; is found to be
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[77'1’77'1']: >

k#i,j

I/ijk(Kijk_Kjik) . (1.4)
This approach can be applied to many integrable systems,
especially to the CS model [5,6].

Recently, Sutherland and Romer (SR) presented a new
long-range-interaction model with the Hamiltonian [11]

+ —_
HSR_22p12+211_1) Py ,  (L5)
i<j sh? X coshzxij
where
1*t0;0;
xXy=x;=%;, Pj=——"—" (o}=1) (1.6)

and a, / are arbitrary parameters. Sutherland and Romer
had proved that Eq. (1.5) is quantum integrable. Parallel
to this development Yan proposed another model [12]:

Hy=13 p?+1318(x;,—x;)P] 1.7)
i i)

that was solved in terms of the Bethe ansatz. So far both
the SR model and the Yan model have not systematically
been studied in terms of the RTT relation.

In this paper we shall show the following points: (i)
The models, Egs. (1.5) and (1.7), are also the conclusion
of Polychronakos’ approach. (ii) On the basis of the RTT
relation, the models, Egs. (1.5) and (1.7), are related to
the realization of the Yangian, namely, they belong to the
Yang-Baxter system. Both (i) and (ii) are consistent with
each other. (iii) Further properties have been discussed
that lead to other complicated conserved quantities.

II. SUTHERLAND-ROMER AND YAN MODELS

Let us first discuss the extended forms of V;; in Eq.
(1.1) that are different from those given by Refs. [5,6].
Setting

V;=PJa;+P;b, (2.1

ij »

where P,-Ji are given by Eq. (1.6) and o; quantum opera-
tors obeying

o,K;=K;o0;, o0K,,=K,,0; (iF¥m,n),
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then by substituting Eq. (2.1) into Eq. (1.1) and doing the
parallel discussion in Ref. [5], we find

Vie =P Ay + P A+ Py Ay + P Ay, (2.2)
where
P5=PIP;,
A =aay tagay taga; ,
By =a;by +byap;  byay; .
Note that P,jk P,k] =Pk’;,-, but P =P only.

The sufficient condition of the quantum integrability of
Eq. (1.1) is [5,6]
Vi =const (or zero) . (2.3)

Now let us look for a new solution to Eq. (2.3).
(1) When 4,70, B;; 70, a sufficient solution can be
checked:

a(x)=Icoth(ax) [or a(x)=Icotlax)],

(2.4)
b(x)=Itanh(ax) [or b(x)=Itan(ax)],
where x = =x;;=x;—x;,and a and / are constants, and
Vip=—1X P +Py +Pg+Pp)=—1%. (2.5)
Define [6]
12
6 ki Fhri

then Eq. (2.5) leads to

2 Pi}L Pt’j_
H=13p+31(— aK,J) - —

2
f i<j sinh“(ax;;)

coshz(ax,»j)
(2.7)
Equation (2.7) is exactly Hggy given by SR [11] when

Define
7=m il 3K (2.8)
i#j
then
(7,7 1=2il(7;,—7;)K;; , (2.9
[H,W;]=[H,7ri]= (2.10)
The conserved quantities are given by
=37 (2.11)
i
which leads to
(41, 1=0, (2.12)
[H,I,]=0, (2.13)

i.e., the model is quantum integrable according to Po-
lychronakos [5,6].
(2) When B, =0, we consider two cases.
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(a) A =0
l
@)= Vipe=0, (2.14)
H=13 p? I—Ky) o .
=32P — P,
e i#j (xi—xj)z Y

which is well known as the Calogero model when P,/
takes the value 1.

(b) Ay =B2#0:
[m,m1=B 3, P, (Kije —K i) - (2.15)
ki, i
Define
m=m+B3> PjK; ; (2.16)
i#j
it is easy to prove that
[#,P;#1=0, Vi and j%k , (2.17)
and
(7,7 1= ZBP, m—7)K; (2.18)
(71, 7;1=2BP; (7} —7})K; , (2.19)
so that Eq. (2.12) is also satisfied. Define
H=1Y 77,?+£’6i S PhK - (2.20)
i it jAkE
With the help of Eq. (2.15), one can prove
[H,m;]=[H,7]1=[H,I,]=0. (2.21)

For case (b) we have two sufficient solutions of V.
@)
a(x)=il cotlax) [or a(x)=Icoth(ax)],
Viw=—1*P} ,
A (2.22)
I(I—akK};) 4
H=; 2 it P .
=; sin [a(x,»—-xj)]
Equation (2.22) is the generalization of the spin chain
model considered by BGHP [10].
(ii)
a(x)=Isgn(x),

H=1 2,;;,2+1 S I(1—K;;)8(x; —x;)P; .
i*j
With the condition that K;;==*1, Eq. (2.23) was first
pointed out by Yan [12] through the Bethe ansatz; he
also found the Y operator defined by Yang [13,14] for Eq.
(2.23):

(2.23)

1

Yl‘j"ﬁ— m[ikij—c(l—aiaj )]
X[ —ik;P+c(1+0,0,)], (2.24)
where P is the permutation, 02=1, Y satisfies [13]
YPYR Y= YR YEPY S (2.25)
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and ¢=1I(I£1)/2 for K;;==%1. Note that there is only
Plf in the Hamiltonian equation (2.23) for the quantum
integrability.

In this section we have reinterpreted the models, Egs.
(1.5) and (1.7), from the point of view of the formulation
Eq. (1.1). Next we shall set up the Yangian [15] descrip-
tion of the models, Egs. (1.5) and (1.7), through the RTT
relation.

III. RTT RELATION AND
LONG-RANGE-INTERACTION MODELS

Let us apply the BGHP approach [10] to the SR model
and Yan model. The solution of the Yang-Baxter equa-
tion, R matrix, takes the simplest form as

R(u)=u+APy , 3.1)
and the RTT relation reads
Roy(u—0)T%u)TY(0)=T%w)T%u)R oy (u —v), (3.2)

where T%u)=T(u)®1, T =18 T(u), and P,y is the
permutation operator exchanging the two auxiliary
spaces 0 and 0’. Then we make the expansion [10]

p oo
T%w)=I+ 3 X2 3 AT®/uln*D | (3.3)
a,b=1 n=0
L 0 yo
Ppy= 3 X2XJ . (3.4)
a,b=1

It is well known that {72°} generate the Yangian [15].
Substituting Egs. (3.1), (3.3), and (3.4) into Eq. (3.2), one
finds

SSXLXE S fun iy
a,b cd n=0
+ 3 u_"_lv_'"_lfﬁ"m}=0, (3.5)
m=0
where

Tzsbc T:d_aadTrfb— [ T:b’ ng] ’
|

ad
8bc T2
i*j

A sufficient solution of Eq. (3.15) is

T =3 I*D?, (3.16)
i

with
— abyba
[D;,D;1=A 3 I*I(D;=D)) . (3.17)

Thus Eq. (3.11) generates a long-range interaction
through Eqgs. (3.14) and (3.17). However, so far there is

—8,, T =3 II [Az IMI%D,—D,)+[D,,D,] ]+ S (8, 159D — 8,,I¢*D?) .
k,1 i
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f2 :Sbc T:d-—sadT:b—.[Tgb Tvd]
Fym=MTETY =TT+ T T 1= [T Thl ]
For any auxiliary space {X,]}, we require

fi1=f3=f3™=0. Obviously, fi=
f3=0. So we need only take

fl— nm —

into account.
First, from f%°=0 it follows that

=0 is equivalent to

(3.6)

8 T, n+1 SadTn 11 =MTg Trfb"T:dT(c)b )+[T:br de] ’
(3.7
which can be recast into
T  =MTETE—TUTE)+[TE,T¢] (a#d), (3.8)
e~ TE L =MTETE —TFTE )+ [T, T, (3.9)

where no summation for the repeating indices is taken.
Equations (3.8) and (3.9) imply that T can be deter-
mined by iteration for given T8 and T'%.

Now let us set

Tg = 2 I, (3.10)
i=1
N
T¢ =3 I™D, , 3.11)
i=1
and
(170, I7)=8,;(8, I/ — 8,41 , (3.12)
where D; are operators to be determined. Substituting
Egs. (3.10)—(3.12) into £}, we obtain
3 > 1D 1]1=0 (3.13)
P
Further, we assume
3 I D;,If4]1=0, for any j, (3.14)
i
with which the T%° should satisfy
(3.15)

no simple relationship between D; and I ;’b that should
satisfy Eq. (3.14). It is very difficult to determine the gen-
eral relationship. Fortunately, BGHP [10] have set up
the link with the help of projection. Let the permutation
groups X, 2,, and 3, be generated by K;;, P;;, and the
product P;;K;;, respectively, where K;; exchange the posi-
tions of partlcles and P;; exchange the spins as positions i
and j. The projection p was defined as

plab)=a for V,€Z,, bEZ,, (3.18)
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i.e., the wave function considered is symmetric. Let I ,-“”
be the fundamental representations; then
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Actually f7 =0 is easy to check. By using

[ﬁin’ﬁjm]z"lil Dik[ﬁi’ﬁjm]ﬁjn Tk
k=0

P;=3 If1P . (3.19)
a,b
n—1
Suppose that [10] =A k}_‘,O Di"(ﬁi’"—ﬁ;" )ﬁj" —k- lKij ,
D;,=p(D,), D,€=,, D,ex (3.20
i=pDi), Di€2, D, EZ, ) we have f3™=0. The projection procedure is very im-
and the ﬁi are particlelike operators, i.e., portant, for it enables us to prove that Eq. (3.6) is satisfied
. by virtue of Eq. (3.20).
Kijﬁi:ﬁjKij’ Kijﬁl:ﬁlKii (176, j) 3.21) With the expansion equation (3.3) and the projected
Define long-range expansion equation (3.22), the Hamiltonian
associated with T'(u) is obtained by the expansion of the
T®=3 I¢%p(D™) (m>0); (3.22)  deformed determinant [10]:
i
det, T(u)=7 e€(o)T |, (u—(p—1)A)
then (a) q § 1o, p
[D;,D;1=Ap~ (P, (D,~D,))=MD,—D))K;; .  (3.23) XToo,(u=(p=28) - Ty (u) . (3.24)
by T ,‘:,b satisfy Eq. (3.6), i.e., the RTT relation, Eq. (3.2). A calculation gives
J
A A A A
det, T(u)=1+ M+ |p3 b-= E_KUHEM(M—U
1 J7t
2
A A A2 A
+=p zﬁi—zzx,, +15 3 KKy tMM-1Z ﬁ,.—7 K;
u i j#Ei i jEk A i JFEi
A? A2
+?M(M—1)(M—2)+TM(M—1) + e (3.25)
[
One takes the Hamiltonian as P
ne taxe H=13p?+13 l(l—aP;) |——5—"
N ) 22 f Py sinh [a(xi—xj)]
Hz%p[ zﬁi—gzKU +5 3 K,,Kjk]. B P;
i iFj iFjFEkFQ 2
cosh”[a(x; —x;)]
(3.26)

Therefore we define the Hamiltonian that has the Yangi-
an symmetry given by Egs. (3.22), (3.12), and (3.17). For
a comparison to the known models, we list the expres-

sions for ﬁi satisfying Eq. (3.23):
D,=p,+2 (x;—x;)+1]K;;, A=2il
=Pt gi[sgn X;—X; ij> il ,
i#]
H=13p}+13 I(1—P;)8(x; —x;) . (3.27)
i i)
D,=p;+3 I{icotla(x;—x;)]+1}K;, A=2l,
i#j
(3.28)
Hel 241 I(1—aPy)
7;‘”" ng sin’[a(x; —x;)] ’
D,=p,+il > {coth[a(x; —x;)]P;]
i*j
+tanh[a(x; —x;)]P; +1}K;; ,A=2il ,
(3.29)

Equations (3.27) and (3.28) were given in Ref. [5] and Eq.
(3.28) was studied in Ref. [10]. Equation (3.29) is the gen-
eralization of the SR model.

An alternative description of the transfer matrix was
given by BGHP [10]. Define

D,=D,—r3 K, ; (3.30)
i<j
then
[Bi’Dj]_o ) (3.3D
[K;;,D1=0 (k#i,j), (3.32)
K;D;—D,K;=A\ . (3.33)

It was proved that

= Py,
T(u)=1+A =

, T(w)=TI T:(u) and p(T(u))
u—D,- i

(3.34)
all satisfy the RTT relation.
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The deformed determinant of T(u ) was defined by

M(u+)») M —
s Apy(u)=TI (u—D;).

det, T(u )=W ol (3.35)
It was proved that
p(det, T(u))=det,[T(u)] . (3.36)

To contain the model, Eq. (2.23), we define Ei related
to the 7; given by Eq. (2.16) as

D;=m—B3 PK;,

j<i

(3.37)

which satisfies Egs. (3.31), (3.32), (3.34), etc. So we can
put the models, Egs. (2.7) and (2.23), into the Yang-
Baxter system.

In conclusion of this section we have shown the con-
sistence between the Yangian symmetry and the integra-
bility of the Polychronakos approach for long-range-
interaction models, and have given an interpretation of
the SR model and the Yan model from the point of view
of the YB system.

IV. REFLECTION ALGEBRA

The associativity of the RTT relation, Eq. (3. 2), is the
Yang-Baxter equation (YBE) [13,14] (R (u)=PR(u)):

vaz(u )§23(u +U)R12(U)=R23(U)R12(u +U)R23(u) )
4.1)

I

85 [K'™, K ™4 +8, 2( | CYRY LR ¢34

K VK- KK

It follows that

(K Ki'1=0 .

Suppose K'9'=8§,,; the iteration relation reads

dethén +2)—8acK1§trin +2):';‘{8ac[K(2)’K(m)]bd
+8p [K VK ™y + KD K,

Equation (4.10) tells us that K™ can be found if K",
K@ and K® are given properly.

Now let us consider the simplest case where K(u) is a
2 X2 matrix given by Eq. (4.12) (see below). Denote

Ty (u)

T, (u) (4.10)

T(u)=

T, (u)
Tzz(u) ’

then

m+2)]+[K;g+l)Kbén

_de[K(l),K(m+1)]ac+K{§§)K1§¢rin)
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where the subscripts indicate the spaces, namely, 1—0,

2—0', and 3—0" in comparison with Eq. (3.2). It is well

known that for a given R (u) satisfying Eq. (4.1) there is

allowed a corresponding reflection operator K(u ) deter-

mined by [16]

R(u—v)K,(u)R(u+v)K,(v)
=K,w)R(u+v)K,(u)R(u—v), 4.2)

where K| (u)=K(u)®1. Equation (4.2) possesses the fol-
lowing remarkable properties [161:
(i) Suppose that K. (u) are c-number solutions of Eq.

(4.2). Then
K.i(uw)=Tw)K ()T (~u) 4.3)
also satisfy Eq. (4.2) .
(ii) Define
tuw)=tr[K (u+MTw)K_(u)T " H—u)]; (4.4
then
[t(u),t(v)]=0, (4.5)

i.e., t(u) forms a commuting family. In order to solve
K (u)in Eq. (4.2) we make the following expansion:

Ko(u)=3 3 XSk

a,b n

(4.6)

Substituting Eq. (4.6) into Eq. (4.2) one obtains, after cal-
culations,

m+l))+8 E(K(m+1)K n) K(nK m+l))

“‘K(ién)Kl(ygﬂ)"‘Ké:)Kéfan)‘K m+1K(n)]_ 4.7

(4.8)

(m) g (2) MDem+1)_ pr(m+1)g-(1)
K c Kbd +Kac Kbd Kac Kbd

™} (m>1). 4.9)
[
T~ 'u)=[det,T(u)]”
Tzz(u_‘)v) —le(u—l)
XN =Ty (u—2A)  Ty(u—»1) (4.11)

Since det, T(«) commutes with T,,(v), one does not care
about the common factor appearing in Eq. (4.11). We
consider the simplest case when K =1 and denote

Kuw)=T(wu)T " Y—u). (4.12)
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Now let us see what happens for the long-range-
interaction model where T(u) is given by Eq. (3.22).
Note that

K“(u )=T11(u )T22(_u _}\.)_le(u )Tz](_u _)\,) N
Kp(u)=T ()T (—u—A)— T, (u)Tp(—u—A) 13
Ko ()=Ty(u)Ty(—u—A)—Tp(u)Ty (—u—A),

Ky (u)=Tp(u)T | (—u—A)— T (u)Tp(—u—2A) .
J
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The T,,(u) in Eq. (4.13) can be expanded in the terms of
Eqgs. (3.3) and (3.22), which give the T, (u ):

Tu(u)=8,+A 3 I1d(u), (4.14)

where d;(u)=p(1/(u —ﬁ,- )). Substituting Eq. (4.14) into
Eq. (4.13) we find

Ky (u)=1+A3 [IMd;(w)+I7d;(—u — M) = MPd;(w)d,(—u—N)]+A2 3 TP =12 1)d (u)d(u—1)

iF#j
Kp(u)=A3 IP'[d(u)—d,(—u—A)+Ad(u)d(—u—1)]+A2S I =12 1Md (u)d(—u—2)
1 i#j
(4.15)
Ky (u)=A T IP[d(u)—d;(—u—N)+Ad;(w)d;(—u—R)]+A S UPI2—IPI2)d,(u)d,(—u—2) ,
1 i#j
Kzz(u)=1+xz_[1,-22d,-<u)+1i11di(—u—k)—k1,.1‘di(u)d,-(—u—M]H&;(1,?21].“—1,.’21}‘)(1,.<u)dj(u—m
i i#j
and
t(u)zKll(u)+K22(u)
Al A A2
=2+—5 23 D;+A 3 P;+C, |+75 | D,+A 3 P;+C,
u i i*J i i#j
A 2]
+= > ‘2,) 13,.+5 —2(N—1)AD; —(N—1)A’D,
u-
+A 3 p(D;D)+21 3, Pyp(DH+A2 3 PD+A3 3 P, —A S Pup(D, D) [+0(u~*), (4.16)

J#I j#i

where C; and C, are constants. Obviously the second
term commutes with the third one on the right-hand side
of Eq. (4.17). Here we would like to emphasize that the
t(u ) does not generate conserved quantities.

The physical meaning of Eq. (4.16) for the long-range-
interaction models is not clear yet. It requires more
knowledge in this area to be explored. What we would
like to say is that the simplest form of reflection matrix
K(u) for long-range-interaction models can really be cal-
culated. Substituting a variety of forms of ﬁi given in
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